您現(xiàn)在的位置:首頁 > 資料下載 > 高壓高水基液壓閥概述

高壓高水基液壓閥概述

  • 發(fā)布日期:2014/6/7      瀏覽次數(shù):3456
  • 提 供 商: 上海申弘閥門有限公司 資料大?。?/td> JPG
    圖片類型: JPG 下載次數(shù): 273
    資料類型: JPG 瀏覽次數(shù): 3456
    相關(guān)產(chǎn)品:
    詳細(xì)介紹: 文件下載    圖片下載    

         本論文首先研究高壓高水基液壓閥的沖蝕磨損與密封泄漏機(jī)理等關(guān)鍵技術(shù)問題。然后,將該成果應(yīng)用于液壓支架電磁先導(dǎo)閥的理論分析和結(jié)構(gòu)設(shè)計中,使基礎(chǔ)研究與實際應(yīng)用相結(jié)合,為成功開發(fā)高水基電磁先導(dǎo)閥提供理論支持。作者以計算流體力學(xué)(CFD)理論、分形(FRACTAL)理論與多剛體系統(tǒng)動力學(xué)理論等為依托,采用理論、仿真、試驗相結(jié)合的方法,建立液壓閥流場仿真模型、泄漏機(jī)理模型、動力學(xué)仿真模型和系統(tǒng)仿真模型,并進(jìn)行數(shù)值計算分析,為此類液壓閥的設(shè)計提供可靠的理論依據(jù)。 高水基液壓閥流動過程的壁面磨損行為,嚴(yán)重影響液壓閥的使用壽命。作者綜合應(yīng)用計算流體動力學(xué)(CFD)理論與沖蝕(EROSION)理論的分析方法,研究高速高壓條件下液壓閥的沖蝕磨損機(jī)理,建立高水基液壓閥流體湍流和沖蝕的數(shù)學(xué)模型。通過可視化模擬,預(yù)測了煤粒對高水基平面閥和球閥不同部位的沖蝕磨損分布,比較準(zhǔn)確地確定了沖蝕磨損對關(guān)鍵元件的影響區(qū)位和程度。研究閥芯和頂桿間的微動磨損與沖蝕的交互破壞,指出了采用側(cè)頂桿結(jié)構(gòu)可以避免磨損疊加。另外,作者對幾種非金屬材料的沖蝕磨損特性進(jìn)行實驗研究,為高水基液壓閥密封副材料的優(yōu)選提供了依據(jù)。 作者使用現(xiàn)代數(shù)字技術(shù),開展高水基介質(zhì)液壓閥氣蝕(CAVITATION)問題的研究,以解決這個難于用實驗方法研究的問題。通過高水基液壓閥流體氣蝕的數(shù)學(xué)模型,研究高水基液壓閥低壓密封的汽穴形成,找出易產(chǎn)生氣穴與氣蝕現(xiàn)象的位置。分析表明,低壓區(qū)對應(yīng)氣體體積百分比高的氣穴區(qū)域,側(cè)頂桿結(jié)構(gòu)同樣可以減輕液壓閥的氣蝕磨損。 分形(FRACTAL)幾何學(xué)的建立,為研究復(fù)雜無規(guī)律的現(xiàn)象提供了新的理論與方法。在考慮端面形貌變化的基礎(chǔ)上,作者提出了基于分形理論研究高水基液壓閥的微觀密封機(jī)理的思路。分析了密封副端面粗糙輪廓波谷面積和彈性接觸點面積的微觀接觸機(jī)理及相互關(guān)系。以縫隙流動的N-S方程為基礎(chǔ),推導(dǎo)出泄漏量與表面粗糙度、分形參數(shù)、密封接觸比壓之間的關(guān)系及相應(yīng)的計算公式,建立了泄漏量分形模型。通過數(shù)值仿真,討論了分形參數(shù)、密封力與泄漏量間的相互關(guān)系,結(jié)果表明,控制表面形貌參數(shù)可以有效降低液壓閥泄漏量。另外,作者對泄漏量與不同的表面粗糙度、密封比壓、密封面寬度之間的關(guān)系進(jìn)行了試驗研究,得出了具有工程應(yīng)用指導(dǎo)意義的定量結(jié)論。

        針對電液控制支架的特殊要求,作者設(shè)計了先導(dǎo)閥的螺線管結(jié)構(gòu)電磁鐵。模擬了磁感應(yīng)強(qiáng)度的大小及其在空間的磁場分布情況,并對電磁鐵的關(guān)鍵結(jié)構(gòu)參數(shù)進(jìn)行優(yōu)化,保證該電磁鐵響應(yīng)速度快,動作平穩(wěn)可靠。通過可視化模擬和分析得知,磁通密度高的地方是銜鐵與極靴導(dǎo)套端重疊部分,極靴內(nèi)徑單側(cè)間隙的變化對吸力起決定作用。后,對電磁鐵的吸力特性進(jìn)行試驗,驗證了數(shù)值分析的正確性。 在研究電磁先導(dǎo)閥的運(yùn)動特性時,虛擬樣機(jī)技術(shù)有助于做出前瞻性的決策。為了評定先導(dǎo)閥動態(tài)特性,作者引入位移響應(yīng)曲線來衡量其動態(tài)性能。通過求解先導(dǎo)閥的動態(tài)數(shù)學(xué)模型,獲得反映動態(tài)特性的數(shù)值計算結(jié)果。綜合考慮先導(dǎo)閥內(nèi)部運(yùn)動元件的接觸碰撞及運(yùn)動拓?fù)潢P(guān)系,建立先導(dǎo)閥詳細(xì)的三維實體模型。研究阻尼系數(shù)、質(zhì)量和剛度變化對先導(dǎo)閥動力學(xué)特性的影響,準(zhǔn)確地預(yù)知其在實際工況下的動態(tài)性能。根據(jù)預(yù)定的系統(tǒng)性能和預(yù)期的目標(biāo)反復(fù)修正幾何參數(shù),終達(dá)到預(yù)期的動態(tài)響應(yīng)性能,為先導(dǎo)閥的設(shè)計開辟了一條新的思路。 電磁先導(dǎo)閥工作口壓力的變化,會引起其內(nèi)部流場相應(yīng)變化,而先導(dǎo)閥出口壓力又受到液控主閥、立柱等負(fù)載的影響。因此,作者從系統(tǒng)角度對先導(dǎo)閥的動態(tài)響應(yīng)進(jìn)行研究,建立了基于AMESim的支架電液控制系統(tǒng)的仿真模型,得到先導(dǎo)閥工作口的不同壓力、流量響應(yīng)曲線,為先導(dǎo)閥流場仿真的初始邊界條件的設(shè)定提供依據(jù)。在此基礎(chǔ)上,研究先導(dǎo)閥的流場分布。根據(jù)先導(dǎo)閥的壓力損失、速度分布等隨流量、出口壓力和入口位置的變化關(guān)系,確定高水基電磁先導(dǎo)閥的*合理結(jié)構(gòu)。 本文的研究工作涉及多學(xué)科理論和現(xiàn)代試驗技術(shù),主導(dǎo)思想是在創(chuàng)新體系下進(jìn)行多種學(xué)科的交叉與融合,以此途徑對高壓高水基液壓閥的理論問題及設(shè)計方法進(jìn)行研究,從而解決實際問題。

    液壓閥塊特征設(shè)計 
    3.1液壓閥塊的結(jié)構(gòu)特點及設(shè)計

    3.1.1液壓閥塊的結(jié)構(gòu)特點 
    按照結(jié)構(gòu)和用途劃分,液壓閥塊有條形塊(Bar Manifolds)、小板塊(Subplates),蓋板(Cover plates)、夾板(Sandwich Plates)、閥安裝底板(Valve Adaptors)、泵閥塊(PumpManifolds)、邏輯閥塊(Logic Manifolds)、疊加減壓閥塊(Accumulator Manifolds)、閥塊(Specialty Manifolds)、集流排管和連接塊(Header and Junction Blocks)等多種形式[35][36]。實際系統(tǒng)中的液壓閥塊是由閥塊體以及其上安裝的各種液壓閥、管接頭、附件等元件組成。

    (1)閥塊體 
    閥塊體是集成式液壓系統(tǒng)的關(guān)鍵部件,它既是其它液壓元件的承裝載體,又是它們油路連通的通道體。閥塊體一般都采用長方體外型,材料一般用鋁或可鍛鑄鐵。閥塊體上分布有與液壓閥有關(guān)的安裝孔、通油孔、連接螺釘孔、定位銷孔,以及公共油孔、連接孔等,為保證孔道正確連通而不發(fā)生干涉有時還要設(shè)置工藝孔。一般一個比較簡單的閥塊體上至少有40-60個孔,稍微復(fù)雜一點的就有上百個,這些孔道構(gòu)成一個縱橫交錯的孔系網(wǎng)絡(luò)。閥塊體上的孔道有光孔、階梯孔、螺紋孔等多種形式,一般均為直孔,便于在普通鉆床和數(shù)控機(jī)床上加工。有時出于特殊的連通要求設(shè)置成斜孔,但很少采用。 (2)液壓閥 
    液壓閥一般為標(biāo)準(zhǔn)件,包括各類板式閥、插裝閥、疊加減壓閥等,由連接螺釘安裝在閥塊體上,實現(xiàn)液壓回路的控制功能。

    (3)管接頭 
    管接頭用于外部管路與閥塊的連接。各種閥和閥塊體組成的液壓回路,要對液壓缸等執(zhí)行機(jī)構(gòu)進(jìn)行控制,以及進(jìn)油、回油、泄油等,必須與外部管路連接才能實現(xiàn)。

    (4)其它附件 
    包括管道連接法蘭、工藝孔堵塞、油路密封圈等附件。

    3.1.2液壓閥塊的布局原則 
    閥塊體外表面是閥類元件的安裝基面,內(nèi)部是孔道的布置空間。閥塊的六個面構(gòu)成一個安裝面的集合。通常底面不安裝元件,而是作為與油箱或其它閥塊的疊加面。在工程實際中,出于安裝和操作方便的考慮,液壓閥的安裝角度通常采用直角。 液壓閥塊上六個表面的功用(僅供參考): (1)頂面和底面 液壓閥塊塊體的頂面和底面為疊加接合面,表面布有公用壓力油口P、公用回油口O、泄漏油口L、以及四個螺栓孔。 
    (2)前面、后面和右側(cè)面 
    (a)右側(cè)面:安裝經(jīng)常調(diào)整的元件,有壓力控制閥類,如溢流閥,安全閥、減壓閥、順序閥等:流量控制閥類,如節(jié)流閥、調(diào)速閥等。 
    (b)前面:安裝方向閥類,如電磁換向閥、單向閥等;當(dāng)壓力閥類和流量閥類在右側(cè)面安裝不下時,應(yīng)安裝在前面,以便調(diào)整。 
    (c)后面:安裝方向閥類等不調(diào)整的元件。

    (3)左側(cè)面 
    左側(cè)面設(shè)有連接執(zhí)行機(jī)構(gòu)的輸出油口,外測壓點以及其他輔助油口,如蓄能器油孔、接備用壓力繼電器油孔等。液壓閥塊塊體的空間布局規(guī)劃是根據(jù)液壓系統(tǒng)原理圖和布置圖等的設(shè)計要求和設(shè)計人員的設(shè)計經(jīng)驗進(jìn)行的。經(jīng)常性的原則如下: 
    (1)安裝于液壓閥塊上的液壓元件的尺寸不得相互干涉。 
    (2)閥塊的幾何尺寸主要考慮安裝在閥塊上的各元件的外型尺寸,使各元件之間有足夠的裝配空間。液壓元件之問的距離應(yīng)大于5mm,換向閥上的電磁鐵、壓力閥上的先導(dǎo)閥以及壓力表等可適當(dāng)延伸到閥塊安裝平面以外,這樣可減小閥塊的體積。但要注意外伸部分不要與其他零件相碰。 
    (3)在布局時,應(yīng)考慮閥體的安裝方向是否合理,應(yīng)該使閥芯處于水平方向,防止閥芯的自重影響閥的靈敏度,特別是換向閥一定要水平布置。    
    (4)閥塊公共油孔的形狀和位置尺寸要根據(jù)系統(tǒng)的設(shè)計要求來確定。而確定閥塊上各元件的安裝參數(shù)則應(yīng)盡可能考慮使需要連通的孔道正交,使它們直接連通,減少不必要的工藝孔。 
    (5)由于每個元件都有兩個以上的通油孔道,這些孔道又要與其它元件的孔道以及閥塊體上的公共油孔相連通,有時直接連通是不可能的,為此必須設(shè)計必要的工藝孔。閥塊的孔道設(shè)計就是確定孔道連通時所需增加工藝孔的數(shù)量、工藝孔的類型和位置尺寸以及閥塊上孔道的孔徑和孔深。 (6)不通孔道之間的小壁厚必須進(jìn)行強(qiáng)度校核。 
    (7)要注意液壓元件在閥塊上的固定螺孔不要與油道相碰,其小壁厚也應(yīng)進(jìn)行強(qiáng)度校核等等。 根據(jù)以上原則,液壓閥塊布局的優(yōu)化方法如下: 
    (1)如果在液壓閥塊某面上的液壓元件的數(shù)量不超過4個,則分別布置液壓元件在4個角附近,不一定在角上.這樣可以保證在兩個邊附近進(jìn)行工藝孔設(shè)計。 
    (2)如果在液壓閥塊某面上的液壓元件的數(shù)量不超過8個,則除了分別布置液壓元件在4個角附近以外,其它液壓元件可根據(jù)情況分別布置在4個邊附近。這樣可以保證在一個到兩個邊附近進(jìn)行工藝孔設(shè)計。 (3)如果液壓閥塊某面上的液壓元件的數(shù)量超過8個以上,可以考慮使用智能方法進(jìn)行優(yōu)化設(shè)計。 
    由于一般情況下,液壓閥塊包含的液壓元件總和不會超過10個以上,所以分配到各個面上的液壓元件數(shù)量不會超過lO個,一般在3到5個左右。 
    由于在一般液壓閥塊設(shè)計中很少涉及到大量的液壓元件布置,所以根據(jù)前兩條的規(guī)則可以滿足系統(tǒng)設(shè)計的基本要求。 
    3.1.3液壓閥塊的設(shè)計思路 
    集成塊單元回路圖實質(zhì)上是液壓系統(tǒng)原理的一個等效轉(zhuǎn)換,它是設(shè)計塊式集成液壓控制裝置的基礎(chǔ),也是設(shè)計集成塊的依據(jù)。閥塊圖紙上要有相應(yīng)的原理圖,原理圖除反映油路的連通性外,還要標(biāo)出所用元件的規(guī)格型號、油口的名稱及孔徑,以便液壓閥塊的設(shè)計。 
    設(shè)計閥塊前.首先要讀通原理圖,然后確定哪一部分油路可以集成。每個塊體上包括的元件數(shù)量應(yīng)適中。閥塊體尺寸應(yīng)考慮兩個側(cè)面所安裝的元件類型及外形尺寸,以及保證塊體內(nèi)油道孔間的小允許壁厚的原則下,力求結(jié)構(gòu)緊湊、體積小、重量輕。

    3.2基于特征的液壓閥塊的交互設(shè)計

    3.2.1基于閥塊的特征分析 
        特征是設(shè)計者對涉及對象的功能、形狀、結(jié)構(gòu)、制造、裝配、檢驗、管理與使用信息及其關(guān)系等具有確切的工程含義的深層次抽象的描述,是產(chǎn)品描述信息的集合[37][38]。不同的應(yīng)用領(lǐng)域和不同的對象,特征的抽象和分類方法有所不同。在機(jī)械產(chǎn)品中,將構(gòu)成零件的特征分為以下幾大類:輔助特征、幾何特征等(1)輔助特征 
    輔助特征是進(jìn)行基于特征的零件實體建模設(shè)計的輔助工具,并不是所設(shè)計實體模型的組成部分。在實體建模時,如何恰當(dāng)?shù)厥褂幂o助特征來順利完成實體建模,具有很大的技巧性。在實體模型的特征創(chuàng)建完畢后,輔助特征可被隱藏或重新顯示。輔助特征主要包括:工作平面、工作軸、工作點、構(gòu)造特征和特征管理設(shè)計樹。工作平面又稱工作基準(zhǔn)面,是輔助創(chuàng)建草圖及其特征和執(zhí)行特征操作終止的工作平面。是一個無限邊界的平坦面,因?qū)嶓w建模的設(shè)計必須在某一平面上完成二維草圖繪制后,進(jìn)行特征操作。所以,工作平面主要作用是確定草圖平面,同時也可以作為特征操作的終止參數(shù)平面和創(chuàng)建其他工作平面的中間媒體。

    (2)幾何特征 
    幾何特征是構(gòu)成零件實體模型的基本要素,是基于特征的實體建模的含義所在,是創(chuàng)建基體特征和進(jìn)行細(xì)節(jié)特征操作的主要部分。根據(jù)創(chuàng)建方式不同,將幾何特征分為草圖特征和直接生成特征。草圖特征是由二維輪廓線或橫斷面進(jìn)行拉伸、旋轉(zhuǎn)、掃描和放樣形成的特征,因此草圖特征又分為拉伸特征、旋轉(zhuǎn)特征、掃描和放樣特征。直接生成特征是直接參數(shù)地創(chuàng)建在實體模型上的特征,是系統(tǒng)或設(shè)計者已定義好的參數(shù)化特征,在建模時,只需進(jìn)行特征定位和輸入?yún)?shù)化尺寸值即可形成的特征。 
    閥塊的特征可以知道,有基本的基體特征,其余就是孔道及沉槽,整體設(shè)計特征如下圖所示:

        采煤工作面用的液壓支架是一種復(fù)雜的煤礦機(jī)械,它能夠可靠有效地支撐和控制工作面的頂板,保證工人安全和各種作業(yè)的正常進(jìn)行。電液控制液壓支架是當(dāng)前采煤技術(shù)裝備的重要標(biāo)志之一,而高壓高水基電磁先導(dǎo)閥是電液控制系統(tǒng)的核心元件,其結(jié)構(gòu)復(fù)雜、精密度高,目前世界上只有德國和美國等少數(shù)國家研究和生產(chǎn)制造,屬高難技術(shù)。我國曾嘗試過自行設(shè)計、制造這種液壓閥,但由于沒有運(yùn)用多學(xué)科理論和現(xiàn)代數(shù)字技術(shù)等手段去深入研究液壓閥的關(guān)鍵技術(shù)問題,只是憑借經(jīng)驗和已有的資料進(jìn)行設(shè)計,致使研制失敗。因此,目前我國高壓高水基電磁先導(dǎo)閥仍然依靠進(jìn)口,成為制約我國采煤技術(shù)由機(jī)械化向自動化發(fā)展的關(guān)鍵技術(shù)之一。 
    1 李謹(jǐn),鄧衛(wèi)華;AMESim與MATLAB/Simulink聯(lián)合仿真技術(shù)及應(yīng)用[J];情報指揮控制系統(tǒng)與仿真技術(shù);2004年05期 
    2 朱碧海,李壯云,賀小峰,朱玉泉,張鐵華;水壓閥關(guān)鍵技術(shù)的研究[J];潤滑與密封;2004年03期 
    3 查柏林,王漢功,徐可為;硬密封球閥耐沖蝕陶瓷涂層研究[J];潤滑與密封;2005年04期 
    4 潘仁度;密封副的細(xì)微泡沫狀泄漏[J];潤滑與密封;2005年05期 
    5 董洪波;錢志博;陳建寧;何正嘉;;閥座組件的密封特性分析和實驗研究[J];潤滑與密封;2005年06期 
    6 徐滟;王渭;;三偏心蝶閥密封接觸問題的有限元分析[J];潤滑與密封;2006年06期 
    7 孫見君;顧伯勤;魏龍;;彈簧比壓對機(jī)械密封性能影響的分形分析[J];潤滑與密封;2006年06期 
    8 馮秀;顧伯勤;;金屬墊片泄漏模型理論研究[J];潤滑與密封;2006年08期 
    9 陳孫藝;流體對管件沖蝕的研究和防護(hù)[J];石油化工腐蝕與防護(hù);2003年05期 
    10 顧永泉;機(jī)械密封比壓選用原則[J];石油化工設(shè)備;2000年02期